一、储能系统在微电网中的作用
1、提高分布式能源的稳定性
分布式能源诸如太阳能、风能、生物质能等可再生能源,普遍受外界环境如光照、温度、风力、气候等因数影响比较大所发电量具备随机性、不稳定性特点。在微电网与电网断开,独立运行情况下,微电网中分布式能源的输出功率随着环境因数的变化而变化,无法为负荷提供稳定的输出。储能系统应用于微电网中,通过能源管理系统(EMS),将分布式能源与储能系统、主电网协同控制,可以平稳分布式能源的波动,稳定输出,并提供分布式能源的就地利用率,避免远距离传输给主电网照成传输压力及电力损耗。
除此之外,储能系统还能在夜间,或分布式能源维修期间,持续为主要负载提供部分电源,减少停电时间。
2、改善用户用电的电能质量
在微电网与主电网连接,并网运行时,其电能质量必须符合国家相关标准,即功率因数、电压不对称、电流谐波畸变率电压闪降等参数需达到相应值。按以上第一点中所述,微电网在无储能系统的情况下,受其本身能源的特性影响,无法保证电能质量,尤其是电压稳定性,储能系统的运用,能够对微电网电能质量的提升发挥重要的作用,系统通过对储能系统中PCS控制,在稳定电能输出的同时,调节储能系统向微电网输出的有功、无功,同时解决电压骤降/跌落问题在面对主电网电压骤升、骤降等问题时,储能系统可以提供快速功率缓冲,快速吸收/补充电能,提供有功,无功功率支煌稳定电压波动。储能系统也能为微电网提供部分谐波治理功能。
3、调峰
储能系统在微电网中,可以在负荷低谷时候,存储分布式能源发出的多余电能,在负荷用电高峰时候释放电能,调节负荷需求。储能系统作为微网中能量缓冲环节,在微网系统中是必不可少的。储能系统在满足峰值负荷用电的同时,可以降低发电机组或变压器所需容量。
二、储能系统如何运用在微电网
储能技术主要的应用方向有:@风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办楼供电;Q诵信系统中作为不间断电源和应急电能系统:0)风力发电和光伏发电系统的并网电能质量调整,作为大规模电力存储和负荷调峰手段;S电动汽车储能装置,作为国家重要部门的大型后备电源等.
据业内人士介绍,微电网是储能最主要的应用领域,作为微电网中必不可少的部分,储能在微电网中发挥了至关重要的作用。
通常来说,微电网的一般结构由能源流和信息流相互融合而成,分为分布式能源、储能装置、电能变换装置、保护装置和微电网能源管理系统组成,也可根据实际应用情况进行增减。相对于大电网,微电网表现为单一的受控单元,它可以保证用户电能的质量和供电安全,同时也是智能电网及能源互联网的重要组成部分.在微电网运行中,有两种运行模式:并网运行模式和孤岛运行模式,并网运行模式是在外部无故障时,微电网与外部电网处于连接的状态:孤岛运行模式是当外部电网发生故喧或者电能质量较差时,微电网通过快速开关可以切断与外电网的连接进入独立运行的状态,保证微电网内部重要负荷的供电可靠性。在微电网孤岛运行模式时,能量来源于分布式能源和储能电池,当分布式能源的出力小于负荷需求时,就会存在一定的功率缺额,解决功率缺额的方法就是在微网系统中配备一定容量的储能设备。
在新能源发电中,经常会由于外界环境条件的变化而出现没有电能输出的情况,例如光伏发电遇到的夜间无光源的情况和风力发电中的没有风吹过的情况等,这个时候就需要储能系统向微电网系统中的用户提供持续的供电。小编查阅资料发现,储能技术进步最快的就是电化学储能技术,以锤离子电池、铅炭电池、液流电池为主导的电化学储能技术在安全性、能量转换效率和经济性等方面均取得了重大突破,极具产业化应用前景。
随着全球可再生能源的普及和电动汽车产业的迅速发展,动力电池也将迎来巨大的市场,此后也将出现大量动力电池退役的回收再利用问题。在业内人士看来,退役后性能尚可的动力电池可作为储能电池继续服役,这个应用随着我国电动汽车的发展将带来储能发展的良机,这将会一个是非常好的应用领域。
电力安全是国家能源安全的重要组成,储能是保证电力安全、低碳、高效供给的重要技术,是支撑新能源电力大规模发展的重要技术,也是未来智能电网框架内的关键支撑技术。能源互联网作为未来全球能源的发展方向,需要从根本上改变现在的发、输、变、配、用的环节配置,这就决定了未来电力的潮流控制、分布式电源及微网将广泛应用,储能技术将是协调这些应用的至关重要的一环。
目前,我国储能技术发展落后于应用需求,业内人士认为,如果未来国家能够从宏观战略层面上制定储能发展规划,加强对储能技术研发与示范的资金支持力度,出台利于储能技术产业化的激励政策与机制,引导社会资金向储能产业倾斜,使得储能项目投资能够获得回报,相信在未来,微电网及储能应用将会迎来大规模的快速发展时期。